Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

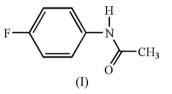
Da-Chang Li,^a Wei-Yi Zhou^b and Chun-Bao Li^a*

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bAnalytical Center, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lichunbao@tju.edu.cn

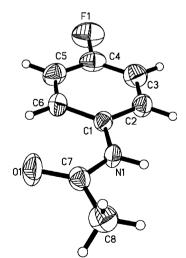
Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.027 wR factor = 0.078 Data-to-parameter ratio = 7.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(4-Fluorophenyl)acetamide

The title compound, C_8H_8FNO , is an important medicinal intermediate. Intermolecular hydrogen bonds are formed between the NH group and the carbonyl O atom of an adjacent molecule.


Comment

N-(4-Fluorophenyl)acetamide is a useful building block for pharmaceuticals. It was prepared by the reaction of acetic anhydride and 4-fluoroaniline in the presence of triethylamine (Goundwater *et al.*, 1996).

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. In the molecular structure of (I), the N1-C7 bond length [1.338 (3) Å] is longer than that (1.32 Å) for a peptide linkage. The N1-C1 bond length [1.414 (3) Å] is shorter than a normal C-N single bond and longer than a normal C=N double bond, probably as a result of electron delocalisation, suggesting that the C1-N1 bond participates in the conjugated system of the benzene ring (Taira *et al.*, 1988).

An intermolecular hydrogen bond is formed between the NH group and the carbonyl O atom of an adjacent molecule (Fig. 2).

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

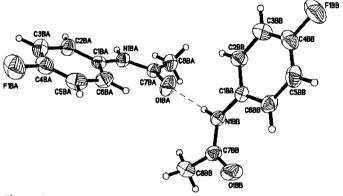
066 Li et al. \cdot C₈H₈FNO

Received 24 October 2005 Accepted 28 November 2005 Online 7 December 2005

Experimental

Acetic anhydride (23.2 ml) was added slowly with stirring to a solution of 4-fluoroaniline (25.0 g) in the presence of triethylamine (25.3 g) at 273 K. The mixture was stirred at room temperature for 3 h. The resulting precipitate was filtered off and washed with water three times. A colourless solid (yield 30 g, 86%) was obtained, and single crystals suitable for crystallographic analysis were obtained by slow evaporation of an ethyl acetate solution [m.p. 426 (2) K]. IR (KBr, cm⁻¹): ν 1702. Analysis required for C₈H₈FNO: C 62.7, H 5.3, N 9.2%; found: C 63.0, H 5.4, N 9.3%.

Crystal data


C ₈ H ₈ FNO
$M_r = 153.15$
Monoclinic, Cc
a = 4.7307 (15) Å
b = 17.067 (5) Å
c = 9.634 (3) Å
$\beta = 92.871 \ (5)^{\circ}$
V = 776.8 (4) Å ³
Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.963, T_{\max} = 0.986$
2137 measured reflections

 $D_{\rm r} = 1.310 {\rm Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1238 reflections $\theta = 2.4-25.8^{\circ}$ $\mu=0.10~\mathrm{mm}^{-1}$ T = 294 (2) K Prism, colourless $0.24 \times 0.20 \times 0.14 \text{ mm}$

796 independent reflections	
681 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.018$	
$\theta_{\rm max} = 26.4^{\circ}$	
$h = -5 \rightarrow 5$	
$k = -21 \rightarrow 20$	
$l = -12 \rightarrow 9$	

Figure 2

The intermolecular N-H···O hydrogen bond, shown as a dashed line. [Symmetry codes: (BB) x, y, z; (BA) x, y, z - 1.]

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.1195P]
$wR(F^2) = 0.078$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
796 reflections	$\Delta \rho_{\rm max} = 0.09 \ {\rm e} \ {\rm \AA}^{-3}$
105 parameters	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.85 (3)	2.00 (3)	2.835 (3)	167 (3)
Symmetry code: (i)	$x, -v + 1, z + \frac{1}{2}$			

All C-cound H atoms were positioned geometrically and refined as riding (C-H = 0.93-0.96 Å). The H atom of the NH group was refined isotropically [N-H = 0.85 (3) Å]. For the CH groups, $U_{iso}(H)$ values were set equal to $1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. In the absence of anomalous dispersion effects, the Friedel pairs were merged.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We thank TJU Young Teacher Foundation (W50501) for financial support.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Goundwater, P. W., Hughes, D., Hursthouse , M. B. & Lewis, R. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 669-673.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Taira, Z., Takayama, C. & Terada, H. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1439-1446.